
Journal of Nonlinear Analysis and Optimization
Vol. 15, Issue. 1, No.15 : 2024
ISSN : 1906-9685

Paper ID: ICRTEM24_127 ICRTEM-2024 Conference Paper

ENERGY USAGE ENHANCING EDGE COMPUTING THROUGH
REINFORCEMENT LEARNING

#1BURLA SRINIVAS, Research Scholar,
#2Dr. PAWAN KUMAR, Associate Professor & Guide,

Department of Computer Scinece &Engineering,

NIILM UNIVERSITY, KAITHAL, HARYANA, INDIA.

ABSTRACT: When users are remote from cloud servers, a phenomena known as over-centralization
occurs in cloud computing. Long delays and high computational energy consumption are related with user-
cloud communication. Edge computing is currently a prominent topic in academic research. By pushing
cloud computing nodes to the edge, users can assign jobs directly to edge servers. Cloud computing isn't as
user-friendly as edge computing. When consumers and edge servers communicate, they consume less
energy and have a shorter transmission latency. This study will primarily look at the core architecture of
edge computing in order to better leverage its benefits and support its growth. Furthermore, we describe a
reinforcement learning-based method for optimizing the energy usage of edge computing. Finally, we use
simulated trials to compare the effectiveness of our suggested technique to other schemes.
Keywords: Edge Computing,Energy Consumption,Optimization,Edge Devices

1.INTRODUCTION
The number of IoT devices on the planet is rapidly
expanding, with more than 24.6 billion linked
devices expected to exist by 2025. This figure is
extremely remarkable. The rapid proliferation of
these devices makes it difficult to estimate data
processing capacities. Previously, we would
upload work, data, and other materials to cloud
servers and wait for the computers to process our
requests while using cloud computing solutions.
We encountered lengthy wait times, unbearable
connection instability, and numerous security and
privacy breaches. Placing servers closer to the
edge, which means closer to the user, is currently

a hot topic in academics. We commonly refer to it
as edge computing. It enables users to move the
processing of complicated services from local
devices to a nearby edge server. The decreased
transmission distance significantly reduces the
communication delay between the user and the
server. Thus, it can meet the low latency
requirements of IoT devices. Edge computing
improves user data security by storing data close
to the user and preventing transmission to
centralized servers.
1.2. High energy consumption of 5G
5G mobile networks will improve data transfer by
offering faster speeds, more bandwidth, and lower
latency.5G services rely on servers designed with



603 JNAO Vol. 15, Issue. 1, No.15 : 2024

a service-oriented architecture. Different types of
edge computing are likely to be directly integrated
in the future.
In the design of the 5G network. This will expand
the possibilities for edge computing. However,
reality may not always reflect our idealized ideas.
The high frequency of 5G data transmission
consumes a substantial amount of energy.
Furthermore, the edge server performs the user's
duties, which requires additional energy for
calculation and data processing. Edge computing
will only be possible in specialized circumstances
because to its high cost and significant energy
requirements, posing obstacles for wider adoption
across multiple sectors.
In 2018, global CO2 emissions were reported to
be 34,041,045,974 tons. To save money and
energy, we must devise a practical strategy to
improving the energy efficiency of edge
computing.
1.3. Contributions
Our primary contributions to this work are as
follows: (1) We develop a four-tier edge
computing architecture to enable user computation
offloading. To reduce energy consumption in edge
computing, we offer an Energy Consumption
Optimization approach (ECOA) based on the Q-
learning method. The method's usefulness is
validated by comparing it to other algorithms. The
ensuing sections of the document are organized in
the following way: In section 2, we provide a brief
overview of the relevant studies. Part 3 focuses on
the edge computing architecture. The energy
consumption model is described in Section 4.
Section 5 shows illustrations of the Markov
decision process and Q-learning-based ECOA.
The method's efficiency is then demonstrated via
simulated studies using six instances. Section 7
provides a conclusion and overview of the work.

2.REALTEDWORK
2.1. Edge computing architectures
Several scientists have created edge computing
architectures with tiered topologies that enable the
isolation and disconnection of specific levels. Li
et al. present a simple two-tier edge computing

architecture. The User Equipment (UE) is the
lowest layer that collects data and comprises a
wide range of mobile devices. The layer above is
known as edge computing, and it consists of a
large number of edge servers that manage
compute and job execution. The UEs delegate
computationally demanding tasks to the edge
servers. Furthermore, Abbas et al. provide an
alternate edge computing architecture design
scenario. The two-tier architecture is enhanced to
include a cloud data center layer that continually
saves data at the edge computing level. Current
edge computing devices can handle some but not
all edge computing activities. The advanced
scheduling plan for edge servers is generally
ignored, and little guidance is given on how to
best use the data protected by edge computing. To
address the scheduling issue with edge servers and
make use of the data collected by edge computing,
an enhanced edge computing architecture must be
developed..
2.2. Energy consumption optimization
algorithms
Developing the architecture for edge computing is
crucial to optimizing the technology's energy
consumption. Many scholars have disputed the
optimization of energy usage in edge computing
and proposed alternative solutions. Wei et al.
created a greedy algorithm to select the edge
server with the lowest energy consumption for
each offloading. Bi et al. classified edge
computing energy usage into three categories:
energy required for processing on edge servers,
energy spent transferring data upstream, and
energy spent on transmission downstream. PSO
was used to optimize energy consumption. Wang
et al. employed deep learning to address the
difficulty of optimizing energy consumption.
They created a DNN (Deep Neural Network) and
employed gradient descent for optimization. The
greedy method can identify the global traversal
optimal solution for small data sets, but as the
number of edge servers increases, global access
efficiency rapidly declines, making it impossible
to employ in practical commercial applications.
Although heuristic algorithms like PSO are



604 JNAO Vol. 15, Issue. 1, No.15 : 2024

slightly more efficient than greedy algorithms,
their huge search solution space means that the
majority of the time is wasted searching. It is also
important to assess the stability of heuristic
algorithms, as they frequently lack robust
theoretical demonstrations of convergence.
However, DNN approaches necessitate the
partitioning of data into test and training sets.
They are widely employed to tackle classification
and regression problems, and additional
processing of the output results is required before
drawing conclusions about offloading. To
summarize, we must improve existing energy
consumption optimization methods for edge
computing and present a novel technique.

3. ARCHITECTURE

Figure 1 Edge Computing Architecture
As shown in Figure 1, we propose a
comprehensive edge computing framework made
up of four major components: the user layer, the
scheduler layer, the edge computing layer, and the
data application layer.
User layer
The user layer comprises of different user
terminals and sensors that collect data and provide
commands. Wearable devices worn by the user
can gather various physiological data and send
packets of heartbeat data to an edge computing
server for analysis of the user's well-being and
health state. Sensors are mounted on vehicles to
track position, speed, and direction in real time,

allowing for aided driving and intelligent
navigation. Furthermore, some consumers use
computational offloading services on their
smartphones and tablets to move locally-based
tasks like gaming and video processing to the
edge. The devices deliver the acquired data in real
time to the edge computing scheduler, which uses
it for analysis and processing on the edge servers.
Scheduler layer
The primary function of the scheduler layer, also
known as a queue model, is to arrange the
scheduling of edge servers spread among
customers. This layer holds the service-
encapsulated data from the computational
offloading for request processing. Following our
proposed ECOA, the edge server with the lowest
energy consumption is chosen to process tasks as
they are removed from the queue individually.
Edge computing layer
The edge computing layer is made up of edge
servers that are located near users and perform the
computational processing of jobs from the
scheduling system. The proximity of edge servers
to users will reduce energy consumption and
computational delay in user data transmission.
However, because the data remains on the local
server and is not sent to the cloud, the user's
security and privacy are somewhat protected.
Data application layer
The fundamental purpose of the data application
layer is to maximize the value of the data. The
primary task is to give researchers and analysts
access to sensitive content derived from data
handled by the edge computing layer. Examples
include performing data analysis and statistics, as
well as providing training data sets for machine
learning, among other jobs.

4. MODEL
Users can assign jobs to M MEC servers (M =
{1,2,..M}) for processing. S = {1, 2,..., s,..., S}
represents the defined services. Transmitting these
services requires the use of a transport channel.
Consider the transport channel as a set of
subcarriers, indicated by N = {1, 2,..., n, N}. We



605 JNAO Vol. 15, Issue. 1, No.15 : 2024

define the jobs for offloading using a triple s max,
where max T indicates the maximum delay
required for compute offloading to occur, s D is
the task's data size, and s G is the number of CPU
clock cycles per bit utilized by the work. We
utilize the {0,1} s m h = offloading assignment
matrix to determine if work s is assigned to edge
server m. Task s is passed to edge server m only if
it is less than or equal to m; else, task s is not
processed by edge server m.
Local computing
In local computing, the CPU frequency is denoted
as l s f, which represents the number of clock
cycles per second that the CPU can do a task.
When executed, the operation time of service(s)
on the local device can be characterized as:

(1)
The above equation may represent the amount of
energy consumed by local computing.

(2)
The coefficient associated with the chip's specific
architecture and design is denoted as 0k. The
value is usually set to 26 x 10^0 k = 1.0*(10^-).To
improve energy efficiency, the CPU clock
frequency is typically dynamically modified in
response to voltage and frequency. Examples of
this include AMD's Turbo Core technology and
Intel's Turbo Boost technology.
Edge computing
Energy consumption during task transmission and
execution on the edge server is mostly caused by
offloading user data for computation. The
equation below can be used to characterize the
latency experienced by service s when computing
on edge server m, which is analogous to local
computation.

(3)
What is the CPU clock frequency of edge server
m while it is running service ,As a result, we can
calculate the energy consumption of edge server
m as it performs job s in the following way:

(4)
The data transfer rate from the user's
computational offload task s to the edge server m
can be calculated using Shannon's theorem.

(5)
The variables wm, s, and n are binary indications
used to pick a subcarrier for task transmission. B
is the channel bandwidth, Ps,n is the power for
task s, and αn is the channel gain. This subcarrier
is only used for task transmission when wm, s,
and n are equal to zero; otherwise, it is not used.
The degree of channel interference can be
quantified using additive Gaussian white noise (ϴ
2). R s,m represents the flat fading component,
which changes with distance. The definition goes
as follows:

(6)
The UE's position is defined by (xs, ys), while the
location where the work must be offloaded to the
edge server is denoted by (X sm, Y sm). Thus, the
data transmission latency between task s and edge
server m can be computed.

(7)
To compute the energy consumption during the
transmission from task s to edge server m, we can
apply the equation E = PT

(8)
The total delay in computational offloading for a
task can be estimated by summing the
transmission and calculation delays and applying
the provided equation.

(9)
The entire energy consumption necessary for the
upcoming computational offloading tasks is
summarized as follows:

(10)



606 JNAO Vol. 15, Issue. 1, No.15 : 2024

Finally, the challenge of optimizing resource
allocation and energy usage for the whole
computing workload can be represented as:

(11)
C1 indicates whether the edge server is used to
offload the operation. C2 assures that each edge
computing server can only handle one task at a
time. C3 denotes the services transmitted via
subcarrier n to edge server m.C4 ensures that each
subcarrier is assigned to an individual user. C5
states that the edge server's CPU clock frequency
range must be an integer less than a predetermined
value. Similarly, C6 states that the channel
transmission gain range must be an integer less
than a certain threshold. C7 ensures that all
offloaded assignments are completed before the
deadline. The problem is classified as mixed
integer nonlinear programming (MINLP), which
is distinguished by a large rise in algorithmic
complexity as the number of UE (User Equipment)
grows. Traditional techniques typically divide the
problem into smaller concerns and address each
one separately, which is extremely complex and
wasteful. The solution will be analyzed using
reinforcement learning.

5. METHOD
Reinforcement learning frequently uses the
Markov decision process to describe how an agent

learns. Usually shown as a five-tuple. E =< S, A,
R, P,γ > . A represents the agent's alteration of the
environment, R represents the reward the agent
receives from the environment as a result of the
modification, and E represents the agent's learning
environment. P represents the likelihood of the
agent switching between states. γ is the decay rate
of the cumulative gain obtained by the agent.
Specifically, it denotes that the agent observes the
state ts ∈S from the environment through
continuous interaction with the complex
environment and makes an action

according to a certain
strategy. Then the environment gives the agent a
reward The agent will
obtain a new state from its surroundings based on
the state transfer probability. The system will
repeat this series of steps. We track the agent's
total gain using U(t), which is frequently adjusted
by the decay rate to reduce future

gain. (1
2)
The subsequent step is to define the state action
value function, as follows:

(13)
This paper refers to the agent as an edge
computing outsourced decision scheduler. Action,
State, and Reward are defined as follows,
depending on the characteristics of edge
computing:
Actions: The service unloads subcarriers to the
peripheral servers, which are defined as follows:

(14)
States: We define the environment in which the
agent located as follows:

(15)
where m s denotes the computational decision.



607 JNAO Vol. 15, Issue. 1, No.15 : 2024

Reward: We define an agent's reward when
acting on the environment as follows because, in
general, the reward received from the environment
is related to the objective function.

is used to
evaluate the energy consumption in the current
state.
Q-learning is a typical reinforcement learning
method that automatically learns in an edge-
computing system according to the MDP
parameters that have been set. An action-state pair
is obtained in each step according to the guide of
the reward function. The value Q(st,at) is usually
used to represent an action-state pair, and these
values form a Q-table. The algorithm continuously
updates the data in theMQ-table until the Q values
obtained in each state converge to the optimal one.
By executing the Qfunction, the cumulative gain
can be obtained as follows: the update method of
the Q-function is generally expressed as follows

(16)
where α is the learning rate and 0 < α <1, and γ is
the decay rate, indicating the degree of acceptance
of future rewards and 0 < γ <1. For the selection
strategy of action, we usually have two strategies:
exploration and exploitation. Exploration refers to
the random selection of actions under the state ts,
and exploitation refers to the full use of existing Q
values to select the action corresponding to the
optimal Q value. We usually use to denote the
probability of exploration, and to make it
dynamically adaptable to different stages of the
cycle, we define it as a variable.

(17)
T denotes the total number of cycles, while k
represents the number of cycles that are currently
in use. The agent will use the exploration strategy
when the likelihood is less than or equal to ℇ, and
the exploitation technique when the probability is
greater than or equal to ℇ. The agent is more likely
to learn new information at the start of the cycle.
As the number of cycles increases, the algorithm

will achieve convergence more quickly due to
increased opportunities to exploit. We propose
ECOA using the Q-Learning method. Here's how
it works: Start by initializing the Q table. Execute
the cycle using the set number of repetitions from
the training. Use equation (17) to calculate ℇ for
each cycle before selecting and implementing the
appropriate policy and action. The reward
function determines how the environment
responds to the state. Finally, following equation
(16), the Q-table is updated to reflect these states.
Algorithm 1 shows the exact execution procedure.

Figure 2. Energy Consumption Optimization
Algorithm

6. SIMULATION AND
PERFORMANCE ANALYSIS

Parameter setting
In this section, we start the simulation of the
proposed algorithm, where the parameters are
given in Table 1, in which radis Rj for all edge
computing servers is set to r = 600m, the channel
bandwidth is set to B =12.5kHz , the noise

variance is set to , the input-data size
is select from the interval of [1000,1200]bits , the
computation workload is set to G s = 1000 cycles
bit , the maximum accomplished deadline is set to



608 JNAO Vol. 15, Issue. 1, No.15 : 2024

the CPU frequency of UEs is set to

the CPU frequency of edge
computing servers is select from the interval of
[1.1,1.2]GHz . We compare the ECOA against the
following offloading algorithm:
1. Minimum Distance Offloading Algorithm

(MDOA). It means that the UEs offload their
tasks to the nearest edge computing server.

2. Random Offloading Algorithm (ROA). Rach
UEs randomly select the edge computing
server to offload services.

Energy consumption with the increase of
services
Figure 3 depicts the change in energy
consumption for each technique as the number of
UEs grows. Edge computing consumes more
energy as the number of devices increases.
However, our proposed ECOA has the lowest
energy consumption. ECOA can dynamically
select computational offloading based on external
conditions. Furthermore, the algorithm's high
level of environmental adaptability is aided by a
dynamically shifting amount of greediness. As a
result, in computational offloading, the model
frequently selects the edge server with the lowest
energy consumption.

Figure 3. Energy consumption versus the number
of UEs

Energy consumption with the increase of edge
computing servers

Figure 4 depicts the change in energy usage for
each algorithm as the number of edge computing
servers increases, for a given number of services.
ECOA's overall energy consumption remains
constant as the number of edge servers grows,
setting it apart from other algorithms and
demonstrating its effectiveness.

Figure 4. Energy comsumption versus the number
of edge computing servers

7. CONCLUSION
This work introduces a four-layer architecture and
the ECOA for addressing energy consumption
concerns in edge computing. against demonstrate
ECOA's effectiveness, we shall compare it against
three benchmark algorithms. In the future, we will
look at new ways to reduce energy consumption
in edge computing and try to implement ECOA in
more realistic scenarios.



609 JNAO Vol. 15, Issue. 1, No.15 : 2024

REFERENCES
1. infoobs, "The number of global iot devices is

growing rapidly,"
2. M. Yao, L. Chen, T. Liu and J. Wu, "Energy

Efficient Cooperative Edge Computing with
Multi- Source Multi-Relay Devices,"

3. J. M. Khurpade, D. Rao and P. D. Sanghavi,
"A Survey on IOT and 5G Network,"

4. H. Lv, D. Chen and Y. Wang, "Deployment of
Edge-Computing in 5G NFV Environment and
Future Service-Based Architecture,"

5. R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in press.

6. L. Li, Z. Kuang and A. Liu, "Energy Efficient
and Low Delay Partial Offloading Scheduling

7. and Power Allocation for MEC,"
8. N. Abbas, Y. Zhang, A. Taherkordi and T.

Skeie, "Mobile Edge Computing: A Survey,"
9. F. Wei, S. Chen and W. Zou, "A greedy

algorithm for task offloading in mobile edge
computing system,"

10. J. Bi, H. Yuan, S. Duanmu, M. Zhou and A.
Abusorrah, "Energy-Optimized Partial
Computation Offloading in Mobile-Edge
Computing With Genetic Simulated-
Annealing- Based Particle Swarm
Optimization," in IEEE Internet of Things
Journal, vol. 8, no. 5, pp. 3774-3785, 1
March1, 2021

11. L. Wang, X. Sun, R. Jiang, W. Jiang, Z.
Zhong and D. W. Kwan Ng, "Optimal Energy
Efficiency for Multi-MEC and Blockchain
Empowered IoT: a Deep LearningApproach

.


